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Summer Teach-in Cosmology: 2 George F. Smoot

Cosmological Lecture 2 includes:

� Potential Cosmology Science

� Review of Eric Linder's Main Points

{ Isotropy and Homogeneity

{ plus Riemannian Geometry yields Roberston-Walker Metric

{ Perturbations: symmetry yields:

� Scalar - energy density perturbations

� Vector - vorticity and shear

� Tensor - gravitational waves

{ Need for In
ation - or special conditions

� Flatness - attractor vs. repulsor

� Horizon

� Garbage - Solution to Pollution is Dilution

� Perturbations

{ Kinematics/Dynamics

� Scale Factor depends upon time

� Contents of Universe determine Scale Factor

� Friedmann Equations - Newtonian Physics

� Equation of State & Evolution

� Comological Models and Tests

� History of the Universe
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The Geometry of the Universe

Geometry of Universe is that of a 4-D Riemannian space.

The di�erential distance is then the generalize Pythagorean

ds2 =
X
��

g��dx
�dx� � g��dx

�dx�

The Cosmological Principle the assumption that on su�ciently

large scales the Universe is homogeneous and isotropic.

� 1967: J. Ehlers, P Geren, R.K. Sachs (J. Math. Physics 9,

1344) proved if all observers see an isotropic background

radiation, then the metric is Robertson-Walker.

� 1994: W. Stoeger, R. Maartens, G.F.R. Ellis proved the

almost theorem.

� 1992-6: COBE DMR shows that CMB isotropic to part in 105.

� Thus: we can then approximate the metric for the universe as:

g�� = (gRW )�� + h��

where gRW is the background Robertson-Walker metric and h��
are the small deviations.



'

&

$

%

The Choice of Riemannian Geometry

For Riemannian Geometry the invariant di�erential distance is

given by

ds2 =
X
��

g��dx
�dx� � g��dx

�dx�

\On the Facts Which lie at the Foundations of Geometry,"

Helmholtz 1868

� Continuous and �rst derivative

� Homogeneous in �rst degree in dxi; (Finsler metric)

{ ds = F (xi; dxi)

{ F (xi; �dxi) = �F (xi; dxi) � > 0

� Small rigid body can be rotated freely about a �xed point

{ Metric function in which three-parameter group of

transformations are possible

{ This transformation invariance requirement leads to

Riemannian metric
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Perturbations - Aside

The Synchronous Gauge This gauge con�nes any perturbations

from Minkowski (or Robertson-Walker) spacetime to the spatial

part of the metric:

g0� = (1; 0; 0; 0)

(or ds2 = c2d�2 � a(t)2
�
dr2 + S2

kd

2
�
+ hijdx

idxj where i and j

range from 1 to 3 rather than from 0 to 3. This gauge is

commonly used in the study of cosmological perturbations.

The Newtonian Gauge The deviation of the metric are expressed

in terms of a function that looks like the Newtonian potential, �.

The metric perturbation is purely diagonal

h�� = h diagonal(1,1,1,1):

c2d�2 =

�
1 +

2�

c2

�
c2dt2 �

�
1� 2�

c2

�
(dx2 + dy2 + dz2): (1)

The Newtonian gauge does not allow gravitational waves, but this

is the correct choice of metric for weak gravitational �elds in a

Minkowski background.
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Perturbations - Aside

Complete Expansion Since g�� is symmetric in 3+1 dimension

there are 10 independent degrees of freedom in the metric:

ds2 = g��dx
�dx� . A convenient scheme that captures these

possibilities is to write the cosmological metric as

c2d�2 = a2(�)f(1+2�=c2)d�2+2wid�dxi�
�
(1� 2 =c2)
ij + 2hij

�
dxidxjg
(2)

where � is the conformal time, and 
ij is the comoving spatial part

of the Robertson-Walker metric. The total number of degrees of

freedom is 2 (scalar �elds � and  ), 3 vector �elds (wi) and 6 (the

symmetric 3-tensor hij which totals 11. To obtain the right

number of 10, the tensor hij is required to be traceless, 
ijhij = 0.

Thus the perturbations can thus be split into three classes: scalar

perturbations, which are described by scalar functions of

spacetime coordinates and which correspond to the growing

density perturbations, vector perturbations, which correspond

to vorticity perturbations, and tensor perturbations, which

correspond to gravitational waves.
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The Roberston-Walker Metric

The Robertson-Walker metric is the metric for a 3+1 dimensional

space that is isotropic and homogeneous (maximally symmetric).

Can derive easily from assumption of constant spatial curvature.

Two-dimensional example is sphere Embed a three dimensional

sphere in a 4-D Euclidean space

x21 + x22 + x23 + x24 = R2

d`2 = dx21 + dx22 + dx23 + dx24

d`2 = dx21 + dx22 + dx23 +
(x1dx1 + x2dx2 + x3dx3)

2

R2 � x21 � x22 � x23

d`2 = dx21 + dx22 + dx23 +
(x1dx1 + x2dx2 + x3dx3)

2

R2 � r2

Set into polar coordinates

x1 = rsin�cos� x2 = rsin�sin� x3 = rcos�

d`2 =
dr2

1� r2=R2
+ r2d�2 + r2sin2�d�2

Robertson-Walker metric form 1

(cd�)2 = (cdt)2 � dr2

1� r2=R2
+ r2d�2 + r2sin2�d�2
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The Roberston-Walker Metric

A form that is manifestly isotropic and shows that the comoving

coordinates are �xed for fundamental observers (those that see an

isotropic universe as moving observers have aberration) comes

from generalizing polar coordinates to 4 dimensions Set into polar

coordinates

x1 = Rsin�sin�cos� x2 = Rsin�sin�sin� x3 = Rsin�cos�

x4 = Rcos� dx24 = R2sin2�d2�

dx21 + dx22 + dx23 = R2cos2�d�2 + sin2�
�
d�2 + sin2�d�2

�

d`2 = R2

2
4d�2 + f

sin2�

�2

sinh2�

g �d�2 + sin2�d�2
�35

The Robertson-Walker form

(cd�)2 = (cdt)2 �R(t)2

2
4d�2 + f

sin2�

�2

sinh2�

g �d�2 + sin2�d�2
�
3
5
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Conformal Time

De�ne conformal time: �

d� � cdt=R(t) cdt = R(t)d�

Now light travels on 45� in the � and � plane just like Minkowski

(x and ct).

(cd�)2 = R(�)2

2
4d�2 � d�2 � f

sin2�

�2

sinh2�

g �d�2 + sin2�d�2
�
3
5

Robertson-WalkerMinkowski Space

Light
Light
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Causality and the Horizon Problem
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The Kinematics - R(t) or a(�)

The kinematics of the large scale Universe is the Robertson-Walker

metric scale factor time behavior.

� = r for light

Scale Factor now/Scale Factor then = 1 + z
6
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Scale Factor

t or �
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Observed Magnitude-Red Shift Relation

Can one determine the function R(t) or a(�) of the

Robertson-Walker metric from observing the magnitude versus

redshift?

Redshift - z Expansion of the Universe stretches wavelengths

1 + z � �0
�1

=
R(t0)

R(t1)

Luminosity Distance

d2L �
L

4�F
= R(t0)

2r2(1 + z)2

dL = R(t0)r(1 + z) = dproper(1 + z)

where L is the luminosity and F is the 
ux.

The last equality can be understood as the result of factors:

� Fraction of the sphere covered by detector is dA=4�R(t0)
2r2

� Expansion decreases the energy crossing the spherical surface

per unit time by (1 + z)2; one factor of (1 + z) arises from the

energy due to red shift and another factor of (1 + z) arising

from the increased time interval.

Thus red shift versus luminosity density is equivalent to relative

scale sizes R(t0)=R(t1) versus distance which is equivalent to time.



'

&

$

%

Kinematics/Dynamics a look ahead

We estimate that the Universe has a moderately complicated R(t)

(a(�)) history:

Epoch(Dominator) R(t) a(�)

Stuff R(t) / t2=3(1+w) a(�) / �2=(1+3w)

Pre � Inflationary ? ?

Inflationary R(t) / eHt a(�) / ���1
Radiation R(t) / t1=2 a(�) / �

Matter R(t) / t2=3 a(�) / �2

DarkEnergy R(t) / t2 to eHDEt a(�) / ���2 to � ��1

curvature R(t) / t a / e�

where w = p=� is from the equation of state.
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The Dynamics - R(t) or a(t)

The dynamics of the large scale Universe is the physics that

determine the Robertson-Walker metric scale factor time behavior.

These are usually expressed in terms of the Friedmann Equations.

Can determine these correctly by working only in the Newtonian

limit.

Consider a uniform distribution of matter (and energy) and focus

on the distance R between a test mass (object) and a randomly

chosen origin.

R6

"!
# 

We can ignore the gravitational e�ect of material

outside of the spherical cavity of radius R (Newton proved and

Bircho� for GR). The Newtonian acceleration of the test particle

due to the gravitational attraction of the matter is

d2R

dt2
= �GM

R2
= �4�

3
G�R

where M is the mass included in radius R and the last equality

holds when the mass is su�ciently uniformly spread that we can

treat it as a constant density �.
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Multiply through by _R � dR=dt to get

_R
d2R

dt2
= �GM

R2
_R

d

dt
(
1

2
_R2) = � d

dt
(
GM

R
)

or equivalently
d

dt
[
1

2
( _R2 +K)] =

d

dt
(
GM

R
)

where K is a constant of integration. (Later we will see that K is

the curvature of the universe and it is also equal �2E=m = minus

twice the fractional binding energy of a particle.) Integrating this

equation we obtain
1

2
( _R2 +K) =

GM

R
or

1

2
_R2 � GM

R
= �K

2

We could have found this same formula by writing down the

equation for the total energy and dividing through by the mass.

1

2
_R2 � GM

R
=
Etotal

m

So that the constant of integration is K = �2Etotal=m.

Now we convert included mass to mean density to get an

interesting formula:

1

2
_R2 � 4�

3
G�R2 = �K

2
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Divide this through by R2 and multiply by 2 to �nd that

(
_R

R
)2 � 8�

3
G� = � K

R2

We can also express this in terms of our comoving coordinates

R = a(t)r where for uniform expansion a la the Hubble law r is a

constant. _R = _ar so that

_R

R
=

_a

a(t)

Thus we readily get the equation

(
_a

a
)2 � 8�

3
G� = �K

a2

This is the �rst Friedmann equation, if we use the Equivalence

Principle and replace the mass density with the energy density

T00. We can �nd the value for K by using the present epoch

values where H0 � _R
R is the current value for Hubble constant in

the Hubble's law v = _R = H0R and the present mean density �0 of

the Universe.

K = (H2
0 �

8�

3
G�)R2

0

which we can put back into the original equation

(
_R

R
)2 =

8�

3
G� � K

R2
=

8�

3
G�� 8�

3
G(
R0

R
)2[�0 � 3

8�

H2
0

G
]

If we de�ne the current critical density as

�c0 =
3

8�

H2
0

G
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which is often called just �c dropping the zero subscript and is

roughly

�c0 �= 2� 10�29h2100 g cm�3

where h100 = H0=100kms
�1Mpc�1. Notice that �c is the density

that is the dividing line between having the test particle escape or

be bound to the central mass. Thus it marks the division between

a universe that will expand forever and on that will slow down

enough to turn around and collapse.

We also de�ne the parameter 
 = �=�c which is the ratio of the

density of the Universe to the critical density. Now we can recast

the formula as one for the expansion rate

(
_R

R
)2 = H2 = H2

0
�H2
0(
0�1)(R0

R
)2 = H2

0
0a
�3�H2

0(
0�1)a�2

The last equality holds for conserved massive particles where


R3 = 
0R
3
0 and we have set a(0) = 1, that is the present scale

factor to comoving coordinates is one. Note that R=R0 = a=a0. In

this case the equation reduces to the simple form

_a2 = H2
0
a

2 �H2
0 (
0 � 1) = H2

0
0=a�H2
0(
0 � 1)

(where the last equality holds for the matter dominated case).

We pause a moment to re
ect that if 
0 < 1 then _a2 ! H2
0 (
0� 1)

and a / t. The universe will keep expanding forever.

If 
0 > 1 then _a2 ! 0 and then later and < 0. This means that

the universe will stop expanding and collapse.

The rate at which the expansion is slowing down d _a=dt is

proportional to the density of the universe so that the time back
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to a �= 0 is going to be a function of 
0 and the scale is set by

H�1
0 , i.e.

tu = f(
0)H
�1
0

It is clear that if 
0 = 0, then there is no decelleration and

f(0) = 1 . We can integrate the equations easily, if 
0 = 1, since

for a matter dominated case reduces to

_a2 = H2
0=a

or taking the square root

a1=2 _a = H0

or
2

3
a3=2 = H0t or t =

2

3
a3=2H�1

0

where the constant of integration is taken care of by de�ning the

origin of time t = 0 as the time a = 0. Since we have de�ned a = 1

as the present, we are at tu = 3=2 H�1
0 . Thus f(
0 = 1) = 2=3

and thus tu(
0 = 1) � 6:7� 109h�1100 years. Note also that the

scale factor for a matter dominated universe is proportional to

a / t2=3. (Actually a = (3=2 H0t)2=3.)
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The Dynamics continued

the internal energy U of a gas of particles is U = �V . Thus

dU = �PdV = �dV + V d�

so that

V d� = �(�+ P )dV

so we get the continuity equation

_� = �(�+ P )
_V

V
= �3(�+ P )

_a

a

where the last equality comes from the relationship V / a3. Now

the Newtonian equation of motion has an additional term coming

from the pressure which we can see from di�erentiating the energy

conservation equation and using the continuity equation. First

recall the equation

(
_a

a
)2 � 8�

3
G� = �K

a2

multiply by a2 and di�erentiate.

2 _a�a = 2
8�

3
G�a _a +

8�

3
G _�a2

where K is a constant so that the derivative is zero. Dividing

through by 2 _a

�a =
8�

3
G�a+

4�

3
G _�

a2

_a
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The continuity equation _� = �3(�+ P ) _aa can be used to eliminate

_�.

�a =
8�

3
G�a� 4�

3
G3(� + P )a

gathering terms we get the other Friedmann equation

�a = �4�
3
G(�+ 3P)a

Note that if �+ 3P > 0 is positive then the universe is

decellerating - that is the rate of expansion is slowing.
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The Dynamics continued - Stu�

Consider a simple equation of state: P = w�. If w = constant, i.e.

independent of time, then we can use the internal energy relation

dU = d(�V ) = �PdV / �Pd(a3)

which implies

d[a3(�+ P )] = a3dP

putting in the equation of state

d[a3�(1 + w)] = a3wd�

from which we can conclude that

� / a�3(1+w)

Solving for a we have a / t2=[3(1+w)] or for w = �1, a / eHt.

Stuff P = w� � / a�3(1+w) a / t2=[3(1+w)] t0 =
2

3(1+w

Radiation P = 1=3 � � / a�4 a / t1=2 t0 =
1
2H

Matter P = 0 � / a�3 a / t2=3 t0 =
2
3H

Curvature �1=3 � / a�2 a / t t0 = H

V acuum Energy P = �� � = constant a(t) / eHt t0 =1
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The Dynamics continued Energy Conservation

Kinetic Energy � Potential Energy = Constant
1

2
mv2 � GMm

R
= Etotal

1

2
mv2 � G4��

3
R2m = Etotal

v2 � 8�G

3
�R2 =

2Etotal

m

H2R2 � 8�G

3
�R2 =

2Etotal

m

H2

�
1� �

(3H2=8�G)

�
R2 =

2Etotal

m

H2 (1�
)R2 = k (3)

Another way to write this is

H2 (1� 
) =
k

R2


k � k

R2

H2 (1�
� 
k) = 0


 + 
k = 1 (4)
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The Dynamics continued - Attractor

(
(z)� 1)a(z)2H(z)2 = (
0 � 1)a20H
2
0 = k

j
� 1j �= (
a

ao
)(1+3w)

Thus for matter and radiation dominated universes j
� 1j is
proportional to (1 + z)�1 and (1 + z)�2, respectively. For a

cosmological constant j
� 1j is proportional to (1 + z)2

Going backwards in a matter or radiation dominated

universe results in rapid approach to 
 = 1. Going

forward in an accelerating universe results in rapid

approach to 
 = 1.

! Need at least as many e-foldings of accelerating phase

as decellerating phase to keep 
 � 1.

The General Relativity derivation of the Friedmann equations that

the 3-D space curvature 3R = 6k=a2 We now have the relation

3R =
6k

a2
= 6H2(
� 1)

The Gaussian curvature 3R = 1=R2
curvature, where Rcurvature is

the 3-space radius of curvature. For the Universe

Rcurvature =
cH�1

j
� 1j1=2 ; Rcurvature =
cH�1

(
� 1 + �=3H2)1=2

Clearly 
 = 1 means space is 
at.
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Solving the Horizon Problem

Another problem solved by In
ation (a sustained period of

accelerating universe) is moving (postponing) curvature problems

outside the horizon

Fit to simple power law expansion

a = a0

�
t

t0

�n

da

dt
= na0

�
t

t0

�n�1

d2a

dt2
= n(n� 1)a0

�
t

t0

�n�2

(5)

Clearly, if 0 < n < 1, then the Universe is decellerating.

If n > 1, then the Universe's scale factor is accelerating.

In terms of consituents equation of state

a = a0

�
t

t0

�2=3(1+w)

So w < �1=3 is the break point for accelerating universe.
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Solving the Horizon Problem - 2

In order to overcome the horizon problem we need for in
ation

(accelerating universe) to go on for at least 60 e-foldings. (Rough

number of e-folding since the GUT scale.)

Now to show that this gives us su�ciently large extra �

� =

Z
cdt

a(t)
=

Z
cdt

a0(t=t0)n
=
ct0
a0

Z
(
t

t0
)�nd

t

t0
=
ct0
a0

(�n+1)
�
t

to

�1�n

Once again, if n > 1 (accelerating universe) one can �nd negative

values of � which are arbitrarily large as one approaches zero

(t! 0).

In terms of equation of state

� =
ct0
a0

(1 + 3w)

�
t

to

�(1+3w)

Thus when (1 + 3w) < 0, � can be negative with large magnitude.
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Solution to Pollution is Dilution

Another problem solved by In
ation (a sustained period of

accelerating universe) in addition to moving (postponing)

curvature problems outside the horizon is reducing unwanted relics

of initial conditions and phase transitions.

Uni�ed gauge theories predict that each spontaneous symmetry

breaking must produce relics. E.g. magnetic monopoles (one per

room), topological defects, superheavy particles, etc. We see no

evidence for these or other previously unknown relics

from the early Universe.

Assume that the GUT symmetry breaking scale is 1016 GeV:

Correponds to a time of about tGUT � 10�38 seconds and thus a

horizon size of dGUT � ctGUT � 3� 10�28 cm. The Universe has

expanded about a factor of 1029 since and this corresponds to a

present day size of 30 cm. There should be one monopole per such

volume size left from the GUT symmetry breaking.

If we have an accelerating phase that expands the Universe by a

factor of 1028 = e64 or greater then, then the present size of the

GUT symmetry breaking causal volume is greater than the

horizon distance (RHorizon = c=H0 � 1028 cm).
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Perturbations from In
ation

Consider the case where In
ation (accelerating universe) occurs at

times between 10�38 to 10�34 seconds.

Very short time so can be considered like a sharp hammer blow or

bremsstrahlung event. All modes from essentially zero frequency

to 1=� = 1034 Hz are produced with nearly equal amplitude.

The Universe has expanded by about a factor (1 + z)

a0
ainflation

=

�
t0

tinflation

�1=2

�=
�
1010 � 3� 107

10�34

�1=2

� 1025

so that the frequencies have been downshifted by that same factor.

Predict then that to �rst order there will be scalar, vector, and

tensor perturbations to the RW metric. Vector perturbations are

surpressed by conservation of angular momentum. The scalar and

tensor perturbations to the curvature will be essentially scale

invariant and would cuto� at a frequency of 109

Tensor modes become gravitational waves when they enter the

causal horizon and their energy density decreases as (1 + z)�1.

Scalar modes undergo acoustic oscillations inside the horizon and

high frequencies are damped out.
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Perturbations from In
ation

In simplest version of In
ation

R(t) / eHt H2 =
8�G

3
V =

8�

3

V

M2
Planck

�= M4

M2
Planck

H � V 1=2

MPlanck
=

M2

MPlanck

Horizon size (separation distance at which things move apart a

speed c)

v = Hd dH =
c

H
=
MPlanckc

V 1=2
=
MPlanckc

M2

Uncertainty Principle

�E�t � �h �p�x � �h

�E=H � �h �pc � h
H

2�

�E � �hH �� =
H

2�

Thus the metric 
uctuations will be of order M2

M2

Planck

If the potential corresponds to an energy of about 3� 1016 GeV,

the metric (curvature) 
uctuations will be of order

h � (3�1016)2

(1:22�1019)2 = 10�5
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Perturbations from In
ation: 2

A more careful look at the perturbations from In
ation

�lna =
dlna

d�
�� =

dlna

dt

dt

d�
�� = H=

d�

dt
��; H � dlna

dt

In a de Sitter background, the rms 
uctuations are �� = H=2�.

kTde Sitter = kTGibbons�Hawking =
�hH

2�
TdeSitter = TGH =

H

2�

For tensor modes (Gravity waves) there is a direct correlation

hGW =
p
16�G�� =

p
16���GW =MPlanck � H=MPlanck

For scalar modes the curvature perturbations can be related to the

density 
uctuations by the relativistic continuity equation:

d�

dt
+ 3H(�+ p=c2) = 0; H � dlna

dt

Multiply through by �t and we have

��+ 3(�+ p=c2)�lna = 0 or �lna = �1

3

��

(�+ p=c2)
:

Note that the pressure is negative in in
ation so that the density


uctuations are enhanced compared to the expected curvature


uctuations.

Since H2 = 8�V (�)=3M2
Planck

�lna = � 3H2

dV=d�
�� = � 8�V

V 0M2
Planck

��
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The ratio of rms gravity wave 
uctuations to density 
uctuations is

R =



h2GW

�1=2
D
h2�

E1=2 =

r
2

�

V 0MPlanck

V

Thus the ratio of tensor to scalar modes is roughly the ratio of the

slope of the in
aton potential (times a Planck energy) divided by

the potential. Slow roll (
at slope) in
ation can have a signi�cant

enhancement of scalar to tensor modes.
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Dynamics with Changing Equation of State

The consequences of dark energy follow from its e�ect on the

expansion rate for a 
at universe (negligible curvature):

H2 =
8�G

3
f�M + �
 + �Xg

H(z)2 = H2
0

�

M(1 + z)2 +

(1 + z) + 
Xe

3
R
z

0

(1+w(y))dln(1+y)
�

= H2
0

h

M(1 + z)2 +

(1 + z) + 
X(1 + z)3(1+w)

i
(6)

where 
M , 

, and 
X are the fractions of the critical density

contributed by matter, radiation, and dark energy, respectively.

The last equality is only for constant w.

This is derived by integration its equation of motion

d
�
�Xa

3
�
= �pXda3

where a is the cosmic scale factor.

Then one has

t0 =

Z t0

0

dt =

Z
1

0

dz

(1 + z)H(z)

r(z) =

Z z

0

dy

H(y)
dL(z) = (1 + z)r(z)
dV

dzd

=

r2(z)

H(z)
(7)


